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SURVEY OF OPTICAL METHODS FOR
THE DETERMINATION OF TEMPERATURES
. IN ROCKET ENGINES]

A

P. J. Vyne and S. S. Penner
Caniel and Florence Guggenheim Jet Propulsion Center,

Cal:fornia Institute of Technclcyy,
Pasadena, Califormunia

A brief survey is presented of optical methods for the determin-

ation of temperatures in rocket engines. The data are presaented in tables

>

and include an outline of basic principles involved in application of a given
technique, a sketch of the experimentil arrangement, and key references

vshich should be consulted for further details.,

PR R ot 3 ot A

1. INTRODUCTION
Optical methods for the determination of temperatures have the
unique advantage of permitting experimental observations without disturb-
S ing the system being studied. Or the other hand, they usually involve
averages over the field of view and are therefore incapable of yielding
. point functions tor physical variables, Extensive applications of spectro-
2ve boen m=dae only ta temnearature measurements on
laminar flames for premixed gases, although some studies have been
reported also of temperatures, pressures, and velocities for rocket
exhaust gases and for liquid- and solid-propellant combustion chambers.
Since review articles are available on the general subject of
optical methods for measuring flame temperatures, a recent and extensive

survey being one publisked by Penner in 1349(1), it does not appear to
be necessary to empnasize hisiorical development and to attempt a

complc:e literature review, & Rather we shall content curselves with

{ . : Supported by the ONR nnder Contract Nohr-220(03), NR 015-210.

Numbers in parenthesis refer to the references iiated at the end of
the rmanuscript.
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summarizing basic principles, with an outline of experimental arrange-
ment, #nd with a set of key references denoted by (&! if referring to one
of the eariiest applications of the method, designaied by (b if coutaining
an adequate review oi vasic principles and of some of the ~ork done 'n
the field, and identified by (¢} if dealing with a recent exampls cf good
experimental technique. Many significant references have been

TR}
(3]

omitted in this surveyv but those quoted should be cuficient to lcod (I

interested reader to -nore exicusive compilations of tae iiterature. For

3 listing of references on jet propulsion xcsearch. 4 compendium

published recently by the National Bureai. ol Standarde m2+ ke consalied (4.
The subject cf measurements of temperatures for isothcamel

and for non-isothermal emitters is surveyed in the following Szctioas II

and Lil, respectively.

11. OPTICAL METHODS FOR MEASURING TEMPERATURES FOR
ISOTHERMAL EMITTERS

From the operational point of view, there are as many different
"temperatures' in flames as there are measuring techniques. However,
experience has shown that the numerical values of a vaiid temperature
determination approach, but never exceed, the adiabatic flame tempner-
atire provided measurements are made on quantities wh_ich are in
equilibrium with the random translational energy distribution of the
molacules. We may regard a value of the temperature determiaed
under equilibrium conditions 23 a direct measure of combustion
efficiency. In practice it may prove to be exceedingly difficuit ¢o
eliminate all instance:z of non-ecquilibrium excitation. For this reason

it is preferable to make temperature determinations by several independ-
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ent methods rather tlian to assume thet any one procedurc lezds to a
significant approximation to the flame temperature. If two ov mo-e
independent experimental technigues leel io the same numericsl rosilt,
then it is very likely that the true flame ‘cmperature {d«fircd *hraugh
the random translational speed of the gas molecules! has heep measured.
It is reisonable to consider that unequivocal experimental
evidence of "temperatures' exceeding the adiabatic flame temp:zrature
indicates departures from equilibrium. If the existence of suck abnoirmal
"temperatures’ can be estabiished, valuable information rnay be obtaincd
regarding come of the individual steps in the combustion processes. On
the other hand, it is clear that the rocket engincer parforming a2 tempera-
ture measurement in order to l2arn something aboui the average state
of combustion or about (he combustion efficiency, will be interested in
experimental procedures which measure the average combustion
efficiency rather than non-equilibrium distributions of an excited chemical

species whose role in the combustion reactions may he only of academic

significance,

A summary of optical methods for measuring temperatures o:
isothermal emitters is given in Table I. The remarks at the end of
each section coatain recommendations reiating to the use of the method,
and are based on the resuits of available practical experience. The

aymbc's are identified in the summary on nomenclature zppended to

the report.



f— . _ e e o

Table I. Optizal Mcthods for the Determination of Temperatures of
Isothermal Badiatgre,

ODETERMINATION OF BRIGHTNESS TEMPERATURES

Principles

The brightoess temperature T, = at the wavelengia N s dez’irzcda
as the temperature at which the ematter under study emits the came :
spectral intensity of radiation as a blackbody. TLtus Cl\)\-s[c‘\;p(cz/}‘Tbr:" 1}- =

measured intensity at )\ . The brightness temperatuse Tbr 13 veiated

1A

to the actual temperature TF' of the emitter by the relation

(TN (7, ) = (Ne,ydn £y Lt

w; 4 L

provided an average emissivity &>\ can be assigned to the emitter for

£

the wavelength region to which the pyrometer responds.

Experimental Procedure

An optical pyrometer iz cuitable for measuring the brightness
temperatures of flames. The wavelength region is selacied by a
filter. A pyrometer compares the brightness of the source with that of

a tungsaten filament heated to a known temperature,

3

&
Fe
£

The phrase’at the wavalength A" is uscd to summarizc the statament

"in the wavelength region between X and X\ + AN\" where AN is generallya
wide wavelength interval (i, e., of the order of 1008). For methods "
! to 5 it is advantageous fo use a spectroscopic instrument of low

resolving power, i, e., tou utilize average emissivities cver wide

wavelength regiona. In this case the observations will not he

affected significin’ly by discrete lines.

SR el
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Table I. (Continued).

Remarks

A measurement of the brignhtness tempezature T‘ar can oe used
to obtain the temperature T only if the sgEsEER emiceivity é)\ is known,
which is generally not the case. For f{lames containing solid particles
(such as finely divided carbon)the emissivity .€_>\ may be known or
else may not differ greatly from unity. The method is not va=fel for

reacting gas mixtures.

References
(a): (3).
(bj}: (1).

{c}: Manuals supplied with commercial optical pyrometers.

2. TWO-COLOR TEMPERATURES

Principles

-

The color temperature T, of an 2mitter ic defined a5 the temp-
erature at which a blackbodv emits radiation havicg the same ratio of
radiant intensities at the wavelengths PN y and >\ 2 28 the emitter under

study. This definition of Tc is expressed by the relation
IOne T I Ted =N rno\l.n/ex(xz.nu,\z. T [7]

The color temperatura 'I.‘c is related to the true temperature T

through the expression
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Table I. (Continued;.

c— * —

(VT - (/T ) =4n Enleyaiic, {(1/ Ay - (1/>\23'! L3]

1f the intensity of radiation emitted by a blackbody may be approximated by

Wien'a cquation, i.e., if )T<< ¢y

Experimental Procedure

The two-color method requires the determination of intensity ratios
in emission at two wavelengths. Photoclectric detectors with waveiength

filters are useful receivers.

Remarl:s

The two-color method can be used if emissivity ratios at two wave-
lengiks cre known. For flames containing solid particles it may be
possible to calculate or measure emissivity ratios (4,5; or else it may be
justified to assume that the emitter is a greybody, i.e., £>\ 1= £>\2 < ).

For homogeneous gases at elevated pressures the two-color
method can be made precise by selecting wavelength regions for which
emissivity ratios can be calcuiated as a function of temperature and

pressure., The labor involved in the use of the precise procedure is

considerable and no publisked examples of application are available.

References

(a): (4.
(b): (1), (5), (6).
(c:: (5), (6.
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Table 1. (Continued).

Eisincip ca

A thermally excited spectral line may be studied by use of a
apectroscope. If the dackground is not as bright as the flame in a
wavelength region including the line center of the emission line, then a
brigat emission line is cbserved. On the other hand, if the background
is brighter than the flame, the line will appear as a dark absorption
line. For a background of arbitrary emission characteristics tne

emission line merges with the background ("poii:t of reversai') when
T, = T (4]

where the subscripts ¥ and Sbr identify the true temperature of the

flame and the brightness temperature of the background, r=zspectively.

It is noteworthy that Equation [4) holds for arbitrary emissivities of

the flame.

Experimental Procedure

Some of the earliest applicatio‘ns of the reversal method were
made to infrared emission bands of }XZO and COZ' which are normaily
present in hydrocarbon flames (7,8). 1f it is desired to make observations
in the visible region of the spectrum, it is necessary to color non-
luminous flames by 2ddition, for instance, of sodium saitgs, which wiil
emi¢ the yellow D" lines of sodium.

The experimental arrangeraent is sketched in Figure ! 4 small

direct-vision spectroscope ic suitable for revecsal exper.ments on the
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Tatiec I. (Continucd).

sodium D-lines. The brightness temper::ture o the baciygronai is

measured with an optical pyrometer.
Remarks

The method dapends on the 2ssumption that the spectrel line on
which ohservations are made is excited'thcrmally. This is not ne:escsari:
the case. For example, temperatures greatly in excess of e adiabatic
flame temperatures have been reported by Caydon and Wolfhara (¢, ior
the reversal temperatures of ircn lines in low-pressurc illames, n
general, however, the sodium line-reverzal method is ocne of the moet
coavenient and useful methods for temperature determinations in regions
of active combustion.

The reversal techniquz can be extended to cover the case in which
the temperature is obtained without requiring precis= determination of
the point of revessal. This extension has been carried through in the

infra-red by Silverman(.0; and for the OH -bands in the ultravioviet by

Curcio, Stewart, and Petty {11!},

Refererces

(a

LYoy

: (7). (8), (12).
(by: (1,), (9), (13},
() (9), (10), (13).
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Table I, {Continued)

4. THE TWO-PATH METHOD

Principles and Experimental Procedure

Foc. a two-path experiment in which the intensitiec of radiation fov

a single traversal and for two traversals «re measured, let Tb‘_ and
i

T be the corrssponding brightness temperatures and Ry tb;e

brz

veflectivity of the mircor at the wavelengta A . The true temperatare of

iyl dag cHNe Sk |

the flame Tgie then given by the expression

o ]

L= exp{(-cz/A )[(ll'rbrzx-u/'rbrl)]} = n>‘{l - exp (~¢,/x )((urbrl)-(l/rf\}}(s}

¥ ) T<ec,.

Ot Il 1 dl

The two-path method is essentially a reversal method in which the

scurce is used as its own background. Two observations of brightness are

I

made, one with a cool blackbody behind the flame and another with a mirves
behind the flame.
Remarks

The two-path method for the measurement of flame temperatures
is an optical technique which permits temperature measurements on
systems in which the intensity of radiation emitted varies rapidly (and
aperiodicaliy) with time, The metbod is recomrrended for usc whenever
spectral emissity data are not available, i.e., for practically all

radiators. This method involves the implicit assumgtion that the emissivity
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Table I, (Continued}

is 2 slowly-varying function of the wavelength in the spectral iegion at
which measurements are made., This assumption becomes anzarent il
we uote that the derivation of Equation [S] involves the use of an
average emissivity over tue spectral region to which the instrumenrt
reaponds. It is known from experimental studies that il: ‘wo-.path
method usuzlly constitutes a very useful expsrimental procedure for
studying the progress of combustion in liquid- and sclid -propz] ant
rocket chambers (14!,
References

(b}: (1}, (14).

(c): (14).

5. COMPENSATED HOT-WIRE METHOWL

Principles and Experimental Procedure

The temperature of a tungsten wire heated in a vacuum, as
determine'd by an optical pyromneter, will be a function of the power
input and consequently of the heating current I (Cf. curve 1 in Figure 2).
Suppose this wire is placed in a flame of temperature TF' Wkhen the
temperature of the wire is below TF ,» the wire will be heated by
conduction from the hot gasea. Therefore, less current will be re-
quired to maintain a given temperature in the flame. Above Tgp more
current is required than in a vacuum in order to maintain & given wire

temperature since heat is now lost by conduction to the flame. A. plot
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Table I. (Continued)

of T ve I for a wire in a flame gives curve 2 of Figure 2 wkich intersects

curve 1 at T = Tp. at T = T there is rot h2at exchange beiweeu ihe

wire 2nd the flame.

Remarks

The method involves the asaumption that the wire does not disturb
the combustion processes and that its emis3ivity in the {iame is ihe same
as in a vacuum. Although numerous examples of catalytic action by wires
in flames have been observed, the compensated hot-wire meitod is
simpler to use than conventional thermocouples and hence is recommendec

for studies on flames in which point by point explorarions are des:redq,

References
(a}: (15).
(b): (1Y, . (13}, (15,.
{c}: (15).
6. POPULATION (ROTATIONAL, VIBRATIONAL, AND ELECTRONIC}
TEMPERATURES
Principles
The rotational, vibrational and electronic temparatures are defined
through the populations of molecules in different rotaticnal, vibrational,
and electronic energy levels. Hence it is appropriate to refer to them
collectively as population temperatures,
The intensity of a spectral line depends on the population of the

initial state involved in a transition and also on the transition probability.
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Table I. {(Continued)

If the encrgy levels of the initial states are sopulated i1r accord with the

Bolizinana distributicn law, then the int=naity of abasorpron lines. 1 .

Auo’

and of emission lines, Iem’ are given by cquaticas of the form:

. . s r
Lys = Xy iV exp (- L,/ kT L6]

L4 , o :
Do = X3ipVy expi-&,/cT,} (7]

where o(l and 0(Z are known quantities for given transitiors, i, and

i, are the transition probabilities, V, and V, are the ‘requencies of

Y

2
the line centers, and £ , and € , are the cnergies of the initial

levels involved in absorption and in emission cxperiments, racspectively.
In first approximation the energiea £ can be represented as the sum
of rotational ( € vibrational (&

rot’) vibls #nd electronic energy levels

{ & 2 ). From Equations [6] and [7] it can be shown that
e
; -1
and

e b zn(lem/izvz4)/a€- 2i =(k TZ. i)"l [9-]

where the subascript i may represent either rot, vib, or ef. It should
be noted that tne population temperatures in absorption (T, i) and in

emiasion ('I‘z i) may be different for @ given chemical species.
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Tabie 1, (Continued)

Expcrimental Procedure

Well-resclved spectra showing individual spectral lines are, in gineral,
required. In ordexr to minimize temperature gradients ncrmel te the
direction of observation, low-pressure flames have heen used, pariiculariy
by Gaydon and Wolfhard - (16, 17}.

Remarks

Determination of population temperaturcs requires claborate
apparatus and has been used most widely for premixed gases and for
diffusion flames (18). This method is of primary iinporiance for studies
designed to determine combusiion mechanism. There kas Be2n conzider-
abhle discussion recently concerning the proper inlcspriatiza of =iioevi-
mental data obtained for OH (19-23).

References
(8): (24}
(b): (19}, (20}, (23}, (25).
(c: (16), (22), (26;.

7. TEMPERATURE MEASUREMENTS UTILIZING SPECTRAL LINE-SH4PE
Principles
The mean translational temperature of individuvai chemical
species can be obtained from a study of spectral line~shape. For ex-
ample, for spectral lines with Doppler-contour the balf-width A :\‘D
(i.e., one half of the width of the spectral line for wkich the spectral

absorption coefficient exceeds one half of its maximum ‘raluc’ is ralated
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Table 1. (Continued)

to the temperature, TF' defined by the random translational motion

through the relation

aAg = (o 3B wr/meB A, 16}

where m is the known mass of the molecule under studyv and >\° 1w the

wavelength at the line ceuter.

Experimental Procedure

Methods utilizing detailed spectral line shapes require the use

of very high-resolution instruments such as interferomeiers and echzlette

gratings.

Remarks

The interpretation of experimental data is greatly complicated by
the inevitable temperaturs gradients present in all flames. The method
holds the greatest promise for low-pressure flames in which the spectral
line-shape is reiativeiy simple. Two-path experiments in the infrared
and in the ultraviolet have been proposed recently for tha simultaneous
determination of temperatures and concentrations.

Refetences
() (27).
(b): (20), (27).
{c): (27).

B =

113. OPTICe L, METHODS FOR MEASURING TEMPERATURES FOR
NON-ISOTHERMAL EMITTERS

It is impcasible to measnre flame tomperatures in non-‘sotherrmal

systems by optical mecihods unless cither {2} the temperature gradients
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are known or (b; :he ron-isothermal aystem czn be approximated by
two or more adjacent isothcrmal regions. The few published flame
temperature measurements, in which attempts were made to
coxrect for temperature gradients, ail invoive the use of simple

flame models. A suinmary of publiched data is presented in Table Il

e e e T

Table II. Optical Methods for the Determination of Temperatures
of Non-Isothhermal Radiators,

1. REVERSAL TEMPERATURES FOR NOpN-ISOTEERMAL EMITTERS

Principles and Experimental Procedure

Griffith and Awberrxy(28} showed that the observead reversal
temperature was approximately that of the hot region if light {rom the
reversal background passed first through a cool zone and then through
a hot zone. If the hot and cold regions were interchanged then intermediate

temperaiures were observed.

Remarks

The conclusions reached by Griffith and Awberry(28) are
appii.atls caly to the syctem on which obeservations were made and cannot

be generalized to other flames.

References

(a): (28).
(b): (1), (13), (28).
(c): (28).
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Tabdble II. (Continued)

2. REVERSAL TEMPERATURES UTILIZING MEASUREMENTS OF
SPECTRAL LINE-SHAPE

Strong, Bundy, and Larson(29, have used an interierometer to studv
line-reversal in non-isotherinal systems. They obtained resolving power
£ . sufficient to observe tha contour of individual spectral lines, Analysis
of the cxperimental data involves the assumntion that the nan-isgthermal
system can be described by two adjacent isothermal regions.
In a flame the observed line-width is determined by three iactors, “iz.,
Doppler broadening, collision broadening, and "absorption-broadening"
which depcnds on the concentrations of sodium in the hot and coid
regions. In an emission expsriment the resultant lia-contour may

bave the shapes illustrated in Figures 3a and 3b. If the iiae shown in Figure

1 FUPYRS PRI AR TRE YRR T
~

3b is studied in a2 reversal experiment with a high resolution spectro -
graph, reversal is observed in different regions of the line as the bright.
ness of the background is increased. For a suitable source the central

region of the line absorbs light and appears dark whereas the wings of

the line remain brighter than the source, thus producing the contour
showu in Figure 3c.

Strong, Bundy, and Larson suggested that, under low resolution,
tota: reversal wonuld be observed when the sum of the areas A and A’ 18

oqual to the area B (Ci. Figure 3¢}, The authors calculated the contours of

Na lines for various optical dsnsiti2s in the hot and co!d zezcs. Thnse ware

WA
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Table II. (Continued;

rombhined to give the observable contour frora which the aparent reversal
temperature couid be derived. The calculations checked well witis th:e
observed reversal temnaratures for the two zones whose veversal tom;:-
craturcs 2nd opticel deasitics had \:cc.n detcimined sepgaraicly.

The decomposition of an ex>erimentally determined line cononr

of the type shown in Figure 3¢ to yicld separate temperatures for ihe hot
and cold regions has i:0t been doceribed, This inversioa caa provaevly

rot be performed uniguely.

Experimental Procedure

The expeviments carried out by Strong, Bundy, 2ad Larsen
utilized a Fabry- PeTot interferometer in order to obtain line Eontours,
The apparatus was elaborate and costly. The work is of particular
interest in the presen: context because it was extended(30)to measure ments of

the velocities and presaures of rocket exhaust gases.

3, POPULATION TEMPERATURES
Principles

For flames representcd by two adjacent isothermal regions, it
is possible to carry through a complete analysis for observable
intensities of individual spectral lines (23, 31). Applications of the

results to flames have not yet been published.
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NOMENCLATURE

xnown proportionality constants.

first radiation conastant = 3. 74 »: 10'5 (erg~cm2)/sec.
second radiation constant = 1.432 cm—K.

velocity of light,

total cnergy of initial quantum state.

electronic encrgy of initial quantum state,

rotational energy of initial quantum stiate.
vibrational energy of initial quantum state.

average emissivity for the wavelength range between A
and A + AN.

total intensity of a spectral line.

transition probability.

radiant intensity emitted by a blackbedy 2t wavelength
X and temperature T.

Boltzmann constant.

waveiength,

mass of a molecule.

frequency.

average reflectivity for the wavelength range between>\
and X + A}\ .

absolute temperature.

flame temperature.

brightness temperature of a flame,

brightness temperatusrs ot the iaght source used in

reversal experimeuts.

color temperature of a flame.
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FIGURE 1.

fIGURE 2.

FIGURE 3.

LIST OF FICURES

EXPERIMENTAL ARRANGEMENT FOR LINE-FLVIKSAL
MEASUREMENTS {SCHEMATIC}. THE SPECTROSCCPE

IMAGES ARE REPRESENTATIVE OF RLESULTS OPTAINED
FCR THE L-LINES OF SODIUM.

PLOT OF HEATING CURREINT VS. TEMPZRATURE YTOR
COMPINSATED HOT WIRL METHOD. CURVYE ]l < PPLIES
FOR A WIRE IN VACUUM, CURVE 2 £AP?LIES FOR 1:L
WIRE IN A FLAME.

CONTCURS OF SPECTRAL LINES OBTAINE]) WHEN o
HOT ISOTHERMAL REGION IS VIZEWZD THROUGH A
COOL ISOTHERMAL GAS LAYER (SCHEMATIC).

a) EMISSION EXPERIMENT. THE DOITED CURVE
REPRESENTS THE ZMISSIiON WHICH WOULD BE
CBSERVED FROM THE HOT REGION ALONE. THE
SOLID CURVE IS PRODUCED AS THE RESULT OF
ABSORPTION OF RADIATION BY THE COOL GaS
LAYER.

(b) EMISSION EXPERIMENT. THE OPTICAL DENSITY
IN THE COCL GAS LAYER HaS BEZIN INCREASED
TO THE POINT WHERE SELF-REVERSaL OCCURS.

(c¢) REVERSAL EXPERIMENT. ABOVE THE
HORIZONTAL LINE THE EMITTED INTENSITY
EXCEEDRS THE INTENSITY OF THE REVERSAL
BACKGROUND: BELOW THE HORIZONTAL LINE
THE CONVERSE APFLIES,
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Specivoscop?

Fl me (T Source (TS",

Experimentil Arrangement {Schematic,

F-Tg Tp & Ty

Images Formed in Spectroscope

Figure 1. Experirnenta! arrangement for line-reversal measurements

(8chematic). The spectroscope images are representative

of results cbtained for the D-lines of sodium.

I’ romete



Brightness Temperature of Wire

Figure 2.

Heating Current -

Plot of heating current vs. temperature for compensated
bot wire method. Curve )} appliec for a wire in vacuuin,

curve 2 applies for the wire in a flame.
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Inteasaty 1n

Intensity in Emission —»

Revergal Expeziment —»-

Intensity 1n Enuv ssion —»

(a; Emission experiment. Tte
cotted curve teprosci. Gie
ermission wiii b wouid Le
cbserved from the Lot xegion
siope The soiid curve is produced
a8 the result of atsorption of

radiztion By he (00l a3 Maver

{b: Emission experiment. The
optical densi'v in the COCL g=8
layer has been in-reased to ihe

point where relf--eversal occurs

(l’ A {c; Reversal experirient. Above

the horizontal line the emitted
/ ’ intensity exceeds the intensity
/ \ of the reversal background;

' \ beiow the horizontal line the

converse applies,.

-y O

v Wavelength —

Figure 3. Contours of spectral lines obtained whzn 4 i.0t
isothermal region is viewed through a coul

isothermal gae lzayer (schematic)
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